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Abstract

This paper presents a hybrid approach of case-based reasoning and rule-based reasoning, as an alternative to the purely rule-based
method, to build a clinical decision support system for ICU. This enables the system to tackle problems like high complexity, low expe-
rienced new staff and changing medical conditions. The purely rule-based method has its limitations since it requires explicit knowledge
of the details of each domain of ICU, such as cardiac domain hence takes years to build knowledge base. Case-based reasoning uses
knowledge in the form of specific cases to solve a new problem, and the solution is based on the similarities between the new problem
and the available cases. This paper presents a case-based reasoning and rule-based reasoning based model which can provide clinical
decision support for all domains of ICU unlike rule-based inference models which are highly domain knowledge specific. Experiments
with real ICU data as well as simulated data clearly demonstrate the efficacy of the proposed method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Expert systems (Bobrow, Mittal, & Stefik, 1986; Ignizio,
1991; Jackson, 1998) (ES) are powerful tools that serve as
adjuncts to decision making and have found wide applica-
bility in a wide variety of areas. An expert system, also
known as a knowledge based system, is a computer pro-
gram that contains some of the subject-specific knowledge
of one or more human experts. Expert systems can explain
why data is needed and how conclusions were reached. The
range of problems that can be handled by expert systems is
vast. Integrating expert systems with clinical decision sup-
port systems has the potential to enhance the quality and
efficiency of treatment in ICU.

ICU’s maintain huge amount of data related to a single
patient. Deriving conclusions out of such large data was
never an easy task. Moreover domains of problems which
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ICU’s tackle are very vast, for example Cardiology, Poi-
soning, Neurotrauma, Cancer and Accident etc. There
are hundreds of such domains which ICU’s are related
to. Currently, the most common form of expert system
structure is a rule-based reasoning (RBR) which deals with
specific domains such as Cancer. It is apparent that there is
some inflexibility in current expert system structure as deci-
sion making has become domain specific. Some of the rea-
sons for this inflexibility in structure are

• Expertise completely depended on knowledge base.
• It takes years to build knowledge base for a single

domain.

Subsequently, these shortcomings in RBR based ES have
given rise to the idea of development of case-based reasoning
(CBR) (Alterman, 1989) based ES. Some of the identified
features of CBR which provide flexibility in ES structure are

• No need to maintain knowledge base for each domain.
• Can be easily extended to different domains.

mailto:kakumar_b03@iiita.ac.in
mailto:ysingh_b03@iiita.ac.in
mailto:ysingh_b03@iiita.ac.in
mailto:ssanyal@iiita.ac.in


66 K.A. Kumar et al. / Expert Systems with Applications 36 (2009) 65–71
This paper is organized as follows: in Section 2, we
review related work in the area. In Section 3, we discuss
the system design. In Section 4, we discuss some algorith-
mic details of the system. In Section 5, we present some
of the results and then conclude.
2. Background

2.1. Research in medical rule based ES

Some of the early AI/Decision Support Systems are
mentioned in the following. AAPHelp: deDombal’s system
for acute abdominal pain (1972): An early attempt to
implement automated reasoning under uncertainty. De
Dombal’s system, developed at Leeds University de Dom-
bal, Leaper, Horrocks, Staniland, and McCann (1974), was
designed to support the diagnosis of acute abdominal pain
and, based on analysis, the need for surgery. The system’s
decision making was based on the naive Bayesian
approach.

INTERNIST I (1974): Pople and Myers begin work on
INTERNIST (Miller et al., 1982), one of the first clinical
decision support systems, designed to support diagnosis,
in 1970. INTERNIST-I was a rule-based expert system
designed at the University of Pittsburgh in 1974 for the
diagnosis of complex problems in general internal medi-
cine. It uses patient observations to deduce a list of com-
patible disease states (based on a tree-structured database
that links diseases with symptoms). By the early 1980s, it
was recognized that the most valuable product of the sys-
tem was its medical knowledge base. This was used as a
basis for successor systems including CADUCEUS and
Quick Medical Reference (QMR), a commercialized diag-
nostic DSS for internists.

MYCIN (1976): MYCIN was a rule-based expert sys-
tem (Buchanan & Shortliffe, 1984) designed to diagnose
and recommend treatment for certain blood infections
(antimicrobial selection for patients with bacteremia or
meningitis). It was later extended to handle other infectious
diseases. Clinical knowledge in MYCIN is represented as a
set of IF-THEN rules with certainty factors attached to
diagnoses. It was a goal directed system, using a basic
backward chaining reasoning strategy (resulting in exhaus-
tive depth-first search of the rules base for relevant rules
though with additional heuristic support to control the
search for a proposed solution). MYCIN was developed
in the mid-1970s by Ted Shortliffe and colleagues at Stan-
ford University. It is probably the most famous early
expert system, described by Mark Musen as being ‘‘the first
convincing demonstration of the power of the rule-based
approach in the development of robust clinical decision
support systems’’ [Musen, 1999].

The EMYCIN (Essential MYCIN) expert system shell,
employing MYCIN’s control structures was developed at
Stanford in 1980. This domain independent framework
was used to build diagnostic rule-based expert systems such
as PUFF, a system designed to interpret pulmonary func-
tion tests for patients with lung disease.

2.2. Research in integrating CBR with RBR

The CBR/RBR hybrids took one of two approaches to
integration

• The first approach is to have independent CBR and
RBR modules, each of which can solve the problem
independently of the other.

• The second approach is to take an essentially RBR sys-
tem, and add a CBR module to provide some portion of
system’s overall functionality.

Our system differs from these approaches, in that it
enhances an essentially CBR system (Nilsson & Sollen-
born, 2004) with an RBR system.

Montani et al. (2003), Riva, Bellazzi, and Stefanelli
(1997) have attempted to integrate a CBR and RBR in a
decision support system for Type I Diabetes patients’ care
and evaluated their results using simulated patients (Mon-
tani et al., 2003). We think that they were not able take full
advantage of the fact that CBR are more general than
RBR, as their system was domain specific i.e. Diabetes.

There have been several more attempts made to develop
CDSS (Ehrhart, Hanson, Marshall, Marshall & Medskerl,
1999) earlier. However most of them are time consuming
like RBR systems (Giarratano, Joseph, & Gary Riley,
2005) and are domain dependent like MYCIN which was
for providing support for diagnosis of blood diseases.
The need is to construct generic CDSS system.

3. System architecture

System architecture mainly consists of (1) CBR system,
(2) RBR module, (3) data entry module, (4) system tuner,
(5) ICU scoring expert and (6) knowledge miner. The sys-
tem architecture is shown in Fig. 1, dotted arrow from one
state to other shows that user can go back to previous state
if he wants to make some changes in the previous state.

3.1. CBR system

The case base reasoning system is the heart of the entire
system. It has three roles to play and therefore has three
components that export various important functionalities.

3.1.1. CBR agent

The CBR agent component has the functionality of driv-
ing the system at beginning of each CBR cycle. Initially
taking partial information of the new patients case as
input, CBR agent searches the past cases and picks the
most relevant matches for the given input case information.
The CBR agent uses simple domain key for searching past
cases and retrieving cases, if domain key unavailable
then CBR agent takes help of bayesian classifier (Zelic,



Fig. 1. System architecture.
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Kononenko, Lavrac, & Vuga, 1997) to get the domain of
the new case. It provides the retrieved cases to the CBR
decision maker for further processing. There are some chal-
lenges in retrieving cases using partial case information of
the patient. One of the challenges is dealing with uncer-
tainty in data. It is the job of this component to handle
these kinds of uncertainties in data.
3.1.2. CBR decision maker

This component takes as input the cases retrieved by the
CBR agent. It analyzes these retrieved cases and decides
the observations that are to be made and investigations
that are to be performed with a certain level of confidence.
After making decision, it suggests the observations that
should be made and investigations that are to be performed
to the user. This component is connected with the data
entry system component for entering the values got after
performing investigations suggested by this component.
3.1.3. Performance monitor

This component holds the functionality of monitoring
the performance of the system. It archives certain rules or
methods which were applied to the cases that were previ-
ously successfully solved with support of this system. These
archived rules and methods can be adapted to solve other
similar cases in future.
Fig. 2. Rule base in XML format.
3.2. RBR module

The declarative knowledge collected from the domain
experts’ opinion is embedded into a taxonomy of produc-
tion rules, fired through a forward chaining mechanism.
For each rule this module performs an action. Rules are
stored in XML format and care is taken that these rules
are most general to all the existing domains handled by
ICU. Sample rule base is shown in Fig. 2.

This module incorporates general knowledge of all
observations and investigations made in ICU. Information
about the local condition of the patient is shown to the user
based on the values entered in the Data Entry System. It
refers to the rule base to get information of the local con-
dition of the patient. After this, it returns the control to
CBR agent for further filtering of cases. This module also
provides a Rule Base Editor for editing, adding or deleting
rules from the rule base. This editor is password protected
so that only domain expert can modify the rules. User-
interface of Rule Base Editor is shown in Fig. 3.

3.3. Data entry system

This component is a user-interface in which the user can
enter the data values of observations and investigations of
the patient for 24 h. The data is temporarily stored in
XML file. When the user is satisfied with the results, then
data of that patient is entered into the database or case-
library permanently. If the user feels difficulty in entering
the values for 24 h, then this component can be configured
such that it takes data automatically from the patient health
monitoring devices. For better visualization of this module,
UI is shown in Fig. 4.

3.4. System tuner

This module is used for tuning the system. Whenever the
user feels that system is filtering wrong set of cases or mov-
ing in wrong direction, then he can tune the system through
this module, so that the system can perform better. We
have provided a Relevance Editor which allows the user
to increase or decrease the relevancy of factors related to
patient. For example: If user increases the relevancy of
BP-systolic, then the system keeps this in consideration
while filtering out the cases at the end of each CBR cycle.
UI is shown in Fig. 5.

3.5. ICU scoring expert

This component can calculate ICU scores for given
patient case. ICU scores like APACHEII (Acute Physiol-



Fig. 3. Rule base editor.

Fig. 4. Data entry system.

Fig. 5. Relevancy editor.
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ogy and Chronic Health Evaluation II), APACHEIII,
GCS (Glasgow Coma Scale), SOFA (Sequential Organ
Failure Assessment), MODS and APS can be calculated
using this module. It can show statistics of mortality rate
of patients in hospital based on various grouping like age
group, sex etc. This information is useful for the doctors
to have an idea about trends in mortality rates in the hos-
pital. The information provided by this component will be
a kind of feedback to the hospital. For example, if
patients whose age is greater than 35 and if mortality rate
is higher than normal then this will indirectly point to the
fact that the hospital was unable to provide proper med-
ication support for this group of patients. By looking at
the information provided by this component hospital
medication techniques can be changed to increase quality
of service.

3.6. Knowledge miner

ICU data contains many hidden information and pat-
tern. When extracted, these can prove to be very useful
for the doctors in effective treatment of the patients. We
came up with the idea of knowledge miner, which takes
the observations from case-base as input, mines them and
retrieves hidden facts. For example: suppose doctor wants
to know the relation between GCS and APACHEII, then
this module will take GCS values of all the patients from
case-base as input column and APACHEII values of all
patients as output column and gives out rules which shows
relationship between this two values. As far as implementa-
tion details of this module is concerned, the Iterative
Dichotomizer Algorithm (ID3) is used to mine the data.
Algorithmic details of the same can be found in next
section.
4. Algorithmic detail of the system

4.1. CBR algorithm

At the heart of the system, case-based reasoning has
been formalized for purposes of computer reasoning as a
four-step process (Aamodt & Plaza, 1994).

(1) Retrieve: Given a target problem, retrieve cases from
memory that are relevant to solving it. A case consists
of a problem, its solution, and, typically, annotations
about how the solution was derived.

(2) Reuse: Map the solution from the previous case to the
target problem. This may involve adapting the solu-
tion as needed to fit the new situation.

(3) Revise: Having mapped the previous solution to the
target situation, test the new solution in the real
world (or a simulation) and, if necessary, revise.

(4) Retain: After the solution has been successfully
adapted to the target problem, store the resulting
experience as a new case in memory.
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4.2. ID3 algorithm for knowledge mining

ID3 (Iterative Dichotomiser 3) is an algorithm used to
generate a decision tree (Quinlan, 1986). The algorithm is
based on Occams razor: it prefers smaller decision trees
(simpler theories) over larger ones. However, it does not
always produce the smallest tree, and is therefore a heuris-
tic. Occams razor is formalized using the concept of infor-
mation entropy:

IEðiÞ ¼ �
Xm

i¼1

f ði; jÞ log f ði; jÞ ð1Þ

The ID3 algorithm can be summarized as follows:

(1) Take all unused attributes and count their entropy
concerning test samples.

(2) Choose attribute for which entropy is smallest.
(3) Create node containing that attribute.
4.3. Case retrieval approaches

Accurate retrieval of cases is very critical in CBR, with-
out which the system may not give proper results. Our sys-
tem uses two major retrieval approaches to retrieve cases.
4.3.1. Weighted Euclidean distance

The most common type of distance measure is based on
the location of objects in Euclidean space (i.e., an ordered
set of real numbers), where the distance is calculated as the
square root of the sum of the squares of the arithmetical
differences between the corresponding coordinates of two
objects. More formally, the weighted Euclidean distance
between cases can be expressed in the following manner.
Let CB = {e1,e2,e3, . . . ,eN} denote a case library having
N cases. Each case in this library can be identified by an
index of the corresponding features. In addition, each case
has an associated action. More formally, we use a collec-
tion of features F = (j = 1,2, . . . ,n) to index the cases and
a variable V to denote the action. The ith case ei in the
library can be represented as an (n + 1)-dimensional vector,
that is, ei = (xi1,xi2,xi3, . . . ,xin, hi), where xij corresponds to
the value of feature Fj(1 6 j 6 n) and hi corresponds to the
value of action V(i = 1,2, . . . ,N).

Suppose that for each feature Fj(1 6 j 6 n), a weight
wj(wj�[0,1]) has been assigned to the jth feature to indicate
the importance of that feature. Then, for any pair of cases
ep and eq in the library, a weighted distance metric (Pal,
Shiu 2004) can be defined as:

dðwÞpq ¼ dðwÞðep; eqÞ ¼
Xn

j¼1

w2
j ðxpj � xqjÞ2

" #1
2

¼
Xn

j¼1

w2
j v

2
j

 !1
2

ð2Þ
where v2
j ¼ ðx2

pj
� x2

qj
Þ. Using the weighted distance, a sim-

ilarity measure between two cases, SM(w) pq, can be de-
fined as:

SMðwÞ
pq ¼

1

1þ adðwÞpq

ð3Þ

where a is positive constant. The higher the value of dðwÞpq ,
the lower the similarity between ep and eq. When all of
the weights take a value of 1, the similarity measure is de-
noted by SMð1Þ

pq ; SMð1Þ
pq �½0; 1�.
4.3.2. Mahalanobis distance

Considering Mahalanobis distance for finding distance
between two cases is a good idea because it is a useful
way of determining similarity of an unknown sample set
to a known one. It differs from Euclidean distance in that
it takes into account the correlations of the data set and
is scale-invariant, i.e. not dependent on the scale of
measurements.

Formally, the Mahalanobis distance from a group of
values with mean l = (l1,l2,l3, . . . ,lp) and covariance
matrix

P
for a multivariate vector x = (x1,x2,x3, . . . ,xp)

is defined as:

DMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� lÞT

X�1ðx� lÞ
q

ð4Þ

Mahalanobis distance can also be defined as dissimilarity
measure between two random vectors~x and~y of the same
distribution with covariance matrix

P
dð~x;~yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~x�~yÞT

X�1ð~x�~yÞ
q

ð5Þ
4.4. Decision making

At the end of each CBR cycle system decides the cases
that need to be eliminated based on a particular score. In
this system, as RBR supports the decision made by CBR
system, we formulate this as:

eE score ¼ k � ECBR þ ð1� kÞ � ERBR ð6Þ

where k is a weighing parameter and is empirically set at an
optimum value in this study. We have selected value of k
where precision was found to be high and value of k we
got is 0.25 as shown in Fig. 7.

ECBR is calculated as

ECBR ¼ EdistðRscoreÞ ð7Þ

Rscore is the vector of relevancy scores obtained from the
relevancy editor as an input from the doctor. Edist is the
distance between the new case and the old case calculated
by weighted Euclidean distance or Mahalanobis distance.
Steps to calculate Edist(Rscore) can be given as:
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(1) If Oi where i = (1,2, . . . ,n) denote feature vectors of
an old case and if Nj where j = (1, 2, . . . ,n) denote fea-
ture vectors of the new case, then Euclidean distance
between each feature vector is denoted by
Euci(Oi,Nj).

(2) Multiplying individual elements of Euci and Rscor-

ei + eps where i = (1,2, . . . ,n),(0 < eps < 1), we get a
new vector and let this be Di.

(3) Taking the square root of sum of squares of Di to get
Edist(Rscore).

As we have Edist(Rscore) we can calculate ECBR using
Eq. (7).

ERBR is mainly calculated as score of satisfaction of the
user. When RBR module gives suggestions based on the
condition of the patient by referring to the rule-base, score
is calculated mainly based on the number of suggestions
accepted by the user and user satisfaction level, in our sys-
tem the ERBR ranged between 1–10.eEscore can be calculated from Eq. 6. For filtering of cases
we decide upon a optimal threshold, if eEscore is less than the
threshold then we eliminate the case else the case is retained
for next CBR cycle.
Fig. 7. Relation between precision and recall for 6 different ICU domains
where max prec = 0.858, k = 0.25 and max recall = 0.628.
5. Results

We tested the system with real ICU data provided by
Intensive Care Unit of Sir Sunderlal Hospital that is
attached to the Institute of Medical Sciences of Banaras
Hindu University. Our case-base had patient data which
consisted of several domains like poisoning, accident, can-
cer, viral diseases etc. We tested with six ICU domains and
tested the performance of our system. Here we will show
some interesting result during evaluation of system for poi-
soning domain. We took a related old case of a patient and
gave this as input to the system. Before that, we populated
the database with five tagged cases which were very close to
the case given as input to the system. These tagged cases
Fig. 6. Each figure showing the result at the end of each CBR cycle.
were selected manually by doctors. We programmed and
visualized all cases in the case library as points scattered
in the space with the input case at the center of the space.
At the end of each CBR cycle the points which are very far
from the center point are eliminated and the points which
have high confidence score come closer to the center as
shown in the Fig. 6. In Fig. 4. of Fig. 6 the tagged cases
in case-base came very close to the central input case and
with CBR–RBR integration this was achieved in 4 CBR
cycles whereas similar result was achieved in 8,9 cycles
using CBR only. We repeated this experiments for all the
6 domains and obtained similar results.
Fig. 8. Relation between precision and eEscore for 6 different ICU domains
where max prec=0.858, max eEscore ¼ 0:335 and max k = 0.25.
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For effectiveness, we examined the relevance of the
retrieved cases given a test case. The retrieval effectiveness
can be defined in terms of precision and recall rates. A pre-
cision rate can be defined as the percent of retrieved cases
similar to the new case among the total number of retrieved
cases. A recall rate is defined as the percent of retrieved
cases, which are similar to the new case, among the total
number of cases similar to the new case which are tagged
in the case-base. The recall and precision rates are com-
puted using:

precision ¼ N correct

N correct þ N false

ð8Þ

recall ¼ N correct

N total

;N total ¼ N correct þ Nmissed ð9Þ

where Ntotal denotes total number of tagged cases similar to
the new case and Ncorrect denotes the number of retrieved
cases similar to the new case. Nfalse is the number of re-
trieved cases dissimilar to the new case and Nmissed is the
number of tagged cases that are similar to the new case
but not retrieved. In our experiments, we tested for 6 differ-
ent domains of ICU and similar results were obtained for
all the domains with max precision of 0.85, recall of 0.62,
optimum threshold of 0.335 and k of 0.25, as shown in
the Figs. 7 and 8.

6. Conclusion

We believe that the systems having flexible architectures
that can support large domains are very much needed and
are more useful than the systems which are domain specific.
So in this system we have tried to induce that flexibility by
giving more importance to CBR technique and making
sure that rule-base consists of rules which are common
for all domains of ICU. We also believe that our approach
would be useful in areas other than Medical.
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